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Properties of the one-dimensional totally asymmetric simple exclusion process �TASEP�, and their connec-
tion with the dynamical scaling of moving interfaces described by a Kardar-Parisi-Zhang equation are inves-
tigated. With periodic boundary conditions, scaling of interface widths �the latter defined via a discrete
occupation-number-to-height mapping�, gives the exponents �=0.500�5�, z=1.52�3�, �=0.33�1�. With open
boundaries, results are as follows: �i� in the maximal-current phase, the exponents are the same as for the
periodic case, and in agreement with recent Bethe ansatz results; �ii� in the low-density phase, curve collapse
can be found to a rather good extent, with �=0.497�3�, z=1.20�5�, �=0.41�2�, which is apparently at variance
with the Bethe ansatz prediction z=0; �iii� on the coexistence line between low- and high-density phases, �
=0.99�1�, z=2.10�5�, �=0.47�2�, in relatively good agreement with the Bethe ansatz prediction z=2. From a
mean-field continuum formulation, a characteristic relaxation time, related to kinematic-wave propagation and
having an effective exponent z�=1, is shown to be the limiting slow process for the low-density phase, which
accounts for the above mentioned discrepancy with Bethe ansatz results. For TASEP with quenched bond
disorder, interface width scaling gives �=1.05�5�, z=1.7�1�, �=0.62�7�. From a direct analytic approach to
steady-state properties of TASEP with quenched disorder, closed-form expressions for the piecewise shape of
averaged density profiles are given, as well as rather restrictive bounds on currents. All these are substantiated
in numerical simulations.
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I. INTRODUCTION

In the absence, so far, of a general theory describing non-
equilibrium processes �even in the steady state�, it is worth-
while to study simple models whose qualitative features, it is
hoped, will hold for a broad class of systems. In this paper
we deal with properties of the one-dimensional totally asym-
metric simple exclusion process �TASEP� �1� and their con-
nection with the dynamical scaling of moving interfaces de-
scribed by a Kardar-Parisi-Zhang �KPZ� equation �2–4�. The
TASEP is a biased diffusion process for particles with hard-
core repulsion �excluded volume� �1,5,6�.

Our main purpose is twofold: first, to probe the relation-
ship between TASEP behavior and KPZ interface evolution
under several distinct constraints, to be described below and,
focusing especifically on systems with quenched disorder, to
provide an account of the effects of frozen randomness on
the density profiles and currents in TASEP. Upon implement-
ing specific features on the particle system, such as various
boundary conditions, assorted particle densities, currents,
and/or injection/ejection rates, as well as quenched inhomo-
geneities, we measure the consequent changes to properties
of the interface problem, taking the latter to be related to the
former by the connection which we now sketch.

The �1+1�-dimensional TASEP is the fundamental dis-
crete model for flow with exclusion. Here the particle num-

ber nl at lattice site l can be 0 or 1, and the forward hopping
of particles is only to an empty adjacent site. Taking the
stochastic attempt rate p=1 �see later� the current across the
bond from l to l+1 is thus Jl,l+1=nl�1−nl+1�. This system
maps exactly to an interface growth model �7� in D=1+1,
having integer values of height variables hi�l� on a new lattice
such that i�l� lies midway between sites l, l+1 of the TASEP
lattice. The hi are constrained by the relation hi�l+1�−hi�l�=1
−2nl �=�1�. When not concerned with detailed associations
of sites between the models we will omit the �l� in i�l�; after
continuum limits, �l� and i�l� become the same.

There is clearly a precise one-to-one correspondence be-
tween these two discrete models and their stochasticity. Vari-
ous associated continuum models are not so clearly related,
due to the possibility of different continuum limits. A naive
continuum limit in the TASEP gives �8,9� the noisy Burgers
turbulence equation �8,10,11� for one-dimensional particle
flow: this equation is the continuity equation resulting from a
continuum version of the TASEP bond current J, which takes
the form

J = −
1

2

��

�x
− �� −

1

2
�2

+ ��x,t� +
1

4
, �1�

where �= �n� �i.e., the “mean field” version of n�, and ��x , t�
is the �uncorrelated� noise here used to represent all the ef-
fects of stochasticity: ���x , t���x� , t���=��x−x����t− t��.

Using the continuum “noiseless” version of the height/
occupation given above for the discrete models, i.e.,
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�h

�x
= 1 − 2� , �2�

it is seen that the Burgers equation is related by a spatial
derivative to the KPZ equation �2� for the evolution of the
height h�x , t� of an elastic interface above a fixed reference
level

�h

�t
=

�2h

�x2 + � �h

�x
�2

+ ��x,t� . �3�

Depending on boundary conditions imposed at the ex-
tremities, one can have different regimes for the TASEP
�1,6�, whose features will be recalled below where pertinent.
There should be corresponding regimes also for KPZ, as
pointed out previously �12,13�.

In Sec. II we investigate the TASEP with periodic bound-
ary conditions, and the associated interface problem. By ex-
amination of interface width scaling, we estimate the respec-
tive critical exponents. We also study the behavior of
asymptotic interface widths against particle density in the
TASEP, as well as the main features of interface slope dis-
tributions and their connections to TASEP properties. In Sec.
III, we examine the interface width evolution corresponding
to open-boundary TASEP systems in the following phases:
�i� maximal current, �ii� low density, and �iii� on the coexist-
ence line. In the latter case, we also calculate density profiles
in the particle system. In Sec. IV we turn to quenched bond
disorder in the TASEP with PBC, providing a scaling analy-
sis of the associated interface widths, as well as results for
interface slope distributions. A direct analytic approach to
steady-state properties of the TASEP with quenched disorder
is given, focusing on averaged profiles densities and system-
wide currents. Finally, in Sec. V, concluding remarks are
made.

II. PERIODIC BOUNDARY CONDITIONS

We start by imposing periodic boundary conditions �PBC�
for the TASEP at the ends of the chain, thus the total number
of particles is fixed. Henceforth, the position-averaged par-
ticle density ��� will be denoted simply by �. Several steady-
state properties are known exactly in this case �1�, as the
configuration weights are factorizable at stationarity. To
make contact with KPZ interface properties, we consider the
width w�L , t� of an evolving interface of transverse size L in
1+1 dimensions in the discrete height model outlined in Sec.
I. The average interface slope is 1−2� �see Eq. �2��, and this
average tilt must be taken into account. This is done by de-
fining

�w�L,t��2 = L−1	
i=1

L

�hi�t� − h1�t� − �1 − 2���i − 1��2, �4�

where only fluctuations around the baseline trend are consid-
ered. Initially, w grows with time as t�, until a limiting,
L-dependent width 
L� is asymptotically reached. With z
=� /�, one expects from scaling �3,4�:

w�L,t� = L�f� t

Lz� , �5�

where

f�u� = �u� u � 1,

const u 	 1.
� �6�

For the D=1+1 KPZ model, one has the exact values �2�
�=1 /2, �=1 /3, z=3 /2.

We have simulated the TASEP on lattices with L=325,
650, and 1300 sites with PBC. For specified densities �, we
would start from a particle configuration as uniform as pos-
sible, in order to minimize the associated interface width. A
time step is defined as a set of L sequential update attempts,
each of these according to the following rules: �1� select a
site at random and �2� if the chosen site is occupied and its
neighbor to the right is empty, move the particle. Thus, the
stochastic character resides exclusively in the site selection
process. At the end of each time step we measured the width
of the corresponding interface configuration. We took typi-
cally Ns=104 independent runs, averaging the respective re-
sults for each t. The evolution of interface widths for �
=1 /2 and assorted lattice sizes is shown in Fig. 1; the good-
ness of their scaling with the exact KPZ indices is typical of
what is attained over the full density range. By examining
the variation of data collapse quality against changes in the
fitting exponents, we estimate �=0.500�5�, z=1.52�3� for �
=1 /2. Direct measurement of the short-time exponent � is
less accurate; for example, fitting the L=1300 data of Fig. 1
for 102
 t
103 to a single power law gives �=0.31�1�.

The limiting �asymptotic� interface width wlim obeys the
�↔1−� particle-hole symmetry of the TASEP, with a maxi-
mum at �=1 /2. Figure 2 exhibits the behavior of wlim for
��1 /2, and lattice size L=325. The leftmost data point cor-
responds to eight particles, i.e., �=0.0246. For even lower
densities, discrete-lattice effects become more prominent,
and the time needed to attain asymptotic behavior increases
significantly.

From Eq. �4�, using hi−hi−1=1−2ni−1, the squared
width is

FIG. 1. �Color online� Double-logarithmic plot of interface
width against time, corresponding to TASEP with periodic bound-
ary conditions �=1 /2; lattice sizes L as in key to symbols. The full
line corresponds to w
 t1/3. Inset: scaling plot of data on main
diagram, using �=1 /2, z=3 /2; L*=L /325.
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�w�L,t��2 =
4

L
	
i=1

L ��i − 1�� − 	
m=1

i−1

nm�2

. �7�

For the steady state with PBC, the configurational weights
are factorizable �1�: each nm is independently distributed,
taking values �0, 1� with probabilities �� ,1−��. Conse-
quently, in this case the average of ��i−1��−	m=1

i−1 nm�2 is �i
−1���−�2�, and the steady state rms width is

��w�L�2��1/2 = c�L − 1�1/2���1 − ���1/2, �8�

where c is a numerical constant. This form, consistent with
having the KPZ scaling exponent �=1 /2, is compared with
the simulation results for averaged limiting widths in Fig. 2.

According to Eq. �2�, particle density fluctuations can be
investigated via the probability distribution functions �PDFs�
for slopes of the associated interface problem. In doing so
within the context of a discrete-lattice model, one must take
recourse to a coarse-grained description. We have experi-
mented by taking interface segments with a varying number
m of bonds, and calculating the average slopes between the
respective endpoints. For m�10 �the smallest practicable
limit, such that the discreteness of allowed slope values still
permits one to speak of a relatively smooth PDF�, the curves
are very close to Gaussians, and their width �height at peak�
varies with m as m−1/2 �m1/2�.

This can be understood by recalling the specific form of
the �factorizable� particle configuration weigths in this case
�1�. Taking � as the overall density, the probability of occur-
rence of a configuration with average slope s=1−2x �i.e.,
average local density x� �0,1��, on a lattice section with m
sites is

P�x� 
 Cm
mx�mx�1 − ��m�1−x�. �9�

Standard treatment of Eq. �9� shows that, close to the maxi-
mum at x=�, the curve shape is indeed Gaussian, with a
width proportional to m−1/2.

Having thus established the nature of the m dependence of
slope PDFs, we have used m=60 in our calculations, which
gives a convenient, almost continuous, spectrum of allowed

slopes. Results for the stationary state are depicted in Fig. 3.
One sees that the �=0.5 PDF is fitted by a Gaussian down to
some four orders of magnitude below the peak, while for �
=0.2, departures from a Gaussian profile are noticeable al-
ready at PDF values 
10−2 times those at the maximum.

We have followed the evolution of interface slope PDFs
during the transient regime �starting from a particle distribu-
tion as uniform as possible�, for �=1 /2. We ascertained that,
already from early times, their shapes are very well approxi-
mated by Gaussians. Figure 4 shows the �root-mean-square�
widths of Gaussian fits to the PDFs against time. It is note-
worthy that, contrary to the behavior of interface widths
shown in Fig. 1, here one does not find any significant de-
pendence on lattice size. It thus appears that, even during the
transient, the range of density fluctuations for �=1 /2 is
shorter than the smallest lattice size considered here, L
=325. The solid curve in Fig. 4 is a stretched exponential
F�t�=a−b exp−�t / t0���, for which the best-fitting parameter
values are t0=380�20�, �=0.51�2�.

In summary, we have shown that our methods, namely
inferring scaling properties of TASEP via those of the asso-
ciated interface problem, do give rather accurate results
�where comparison is possible, i.e., for the scaling exponents

FIG. 2. �Color online� Limiting interface width wlim against par-
ticle density � for lattice with L=325, PBC. Squares are numerical
results, from Ns=104 samples each. Error bars are smaller than
symbol sizes. The full line is the analytic expression, �8� with a
=9.97 �see text�.

FIG. 3. �Color online� Slope PDFs in stationary state, lattice size
L=325 with PBC, for �=1 /2 and 0.2. Full lines are Gaussian fits to
data.

FIG. 4. �Color online� Width  of slope distributions in transient
regime against time, for �=1 /2 and assorted lattice sizes L with
PBC. Initial particle configuration: alternate empty and filled sites,
for minimum interface width. Full line is stretched exponential fit to
data �see text�. The inset shows details of the main figure close to
the vertical axis.
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�, �, and z� in the simplest case of a purely stochastic system
with PBC. Our results so far are in agreement with the so-
called KPZ conjecture �9�, sketched in Eqs. �1�–�3� above.

III. OPEN BOUNDARY CONDITIONS

A. Numerical results

With open boundary conditions, the following additional
quantities are introduced: the injection rate �I at the left end
and the ejection rate �E at the right one �both defined as
fractions of the internal hopping rate�. The number of par-
ticles is no longer constant, although at stationarity it fluctu-
ates around a well-defined average. Therefore, in order to
consider the associated interface widths, one needs to sub-
tract the instantaneous average slope 1−2��t�, in the manner
of Eq. �4�, at each time step.

Many stationary properties are known for this case
�1,5,6,14–16�, including the phase diagram in ��I ,�E� space.
With open boundary conditions one must be aware that, even
at stationarity, ensemble-averaged quantities such as densi-
ties will locally deviate from their bulk values, within “heal-
ing” distances from the chain extremities which depend on
the boundary �injection/ejection� rates.

Numerical density-matrix renormalization group �DMRG�
techniques have been applied to estimate the dynamic expo-
nent z for several locations on the phase diagram �17�. More
recently �18�, a Bethe-ansatz solution has been provided,
giving exact �analytic� predictions for the value of z every-
where on the phase diagram.

We started by investigating the maximal-current �MC�
phase �J=1 /4� at �I�1 /2, �E�1 /2. The Bethe ansatz so-
lution �18� predicts the KPZ value z=3 /2 there, concurrently
with DMRG results �17�. We took �I=�E=3 /4, starting from
an initial configuration with �=1 /2 �in the present case, this
is the average final density as well�, and alternate empty and
filled sites, for minimum interface width. The evolution of
interface widths against time was very similar to the PBC
case, as shown in Fig. 5, and the KPZ exponents �=1 /2,
�=1 /3, z=3 /2 were extracted within error bars of the same

order as those for PBC. We also checked the multicritical
point �I=�E=1 /2, and found the KPZ exponents again
there, with an accuracy similar to that obtained deep within
the MC phase. The value z=3 /2 has been found at this point
by DMRG as well �17�.

Elsewhere on the phase diagram, a low-density phase ex-
ists at �I
1 /2, �I
�E �with �=�I�, and a high-density
phase at �E
1 /2, �E
�I �with �=1−�E� �1,5,6,14�. There
is a critical coexistence line �I=�E
1 /2, where a first-order
transition occurs �1�. The low- and high-density phases are
further subdivided �18�. However, such subdivisions will not
concern us directly here, the relevant fact being that �outside
the MC phase� the Bethe ansatz solution predicts a nonvan-
ishing gap as L→� �i.e., z=0� everywhere �this is found by
DMRG as well �17��, except on the coexistence line where
diffusive behavior with z=2 is expected �18�.

We first examined a point away from the coexistence line,
namely, �I=1 /4, �E=1 /2, where the stationary density is
thus �=1 /4. Setting the initial density at the stationary value,
the time evolution of the associated interface widths is quali-
tatively very similar to the cases illustrated earlier, as shown
in Fig. 6; however, scaling turns out to be very different.

Attempting curve collapse on the data of Fig. 6 �see inset�
gives the following estimates: �=0.497�3�, z=1.20�5�. This
would imply �=0.41�2� from scaling; a direct fit of L
=1300 data for 102
 t
103 gives �=0.35�1�, which is a
larger discrepancy compared with the scaling prediction
than, e.g., for PBC or for the MC phase with open bound-
aries.

These results for � and z are inconsistent with the scaling
relation �+z=2 from Galilean invariance �2�; however, it
should be recalled that translational invariance, the key in-
gredient for Galilean invariance to hold is, in general, broken
by the system’s boundaries present here. The fact that �+z
=2 is obeyed for open boundary conditions, in the MC phase
�I, �E�1 /2, can be explained on the basis of simple
kinematic-wave theory �16� for the TASEP. Indeed, in this
phase the kinematic waves produced by both boundaries do
not penetrate the system �16�, and one does not see the for-
mation of a shock �density wave� in the bulk which would
otherwise disrupt the translational symmetry.

FIG. 5. �Color online� Double-logarithmic plot of interface
width against time, corresponding to TASEP with open boundary
conditions inside the maximal current �MC� phase �I=�E=3 /4.
Initial density �=1 /2 and lattice sizes L as in key to symbols. The
full line corresponds to w
 t1/3. Inset: scaling plot of data on main
diagram, using �=1 /2, z=3 /2; L*=L /325.

FIG. 6. �Color online� Double-logarithmic plot of interface
width against time, corresponding to TASEP with open boundary
conditions inside the low-density �LD� phase �I=1 /4, �E=1 /2. Ini-
tial density �=1 /4 and lattice sizes L as in key to symbols. The full
line corresponds to w
 t5/12. Inset: scaling plot of data on main
diagram, using �=1 /2, z=6 /5; L*=L /325.
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As mentioned above, both DMRG numerics �17� and the
Bethe ansatz solution �18� predict z=0, i.e., the correlation
length is supposed to be finite here. We defer discussion and
a proposed solution of the apparent contradiction between
our own results and previous ones, to Sec. III B below, where
a continuum mean-field treatment of the approach to station-
arity is developed. For the moment, we note that an expla-
nation can be provided for the limiting-width exponent �, by
going back to Eq. �7� which was there applied to the
factorizable-weight case of PBC. As seen from the develop-
ment immediately below Eq. �7�, the only changes brought
about by a finite correlation length �assumed to be �L�
amount to an L-independent correction to the term within
round brackets, resulting from short-range density-density
correlations. Thus, the L1/2 dependence of ��w�L�2��1/2, given
in Eq. �8�, remains valid here. This is corroborated by our
numerical estimate �=0.497�3�, quoted above.

Next, we looked at a point with �I=�E=1 /4, on the co-
existence line. In the stationary state, one expects a low-
density phase with �−=�I and a high-density one with �+
=1−�E to coexist. We investigated the time evolution of
both interface widths and overall densities, with two differ-
ent initial conditions, namely, �0=1 /4, 1 /2 �because of
particle-hole symmetry, starting with �=3 /4 gives the same
interface width as for �=1 /4, and a complementary particle
density�. It can be seen in Fig. 7 that with both initial con-
ditions, the fixed point for the average density is �=1 /2.
While, for �0=1 /4, the time evolution of the associated in-
terface width still displays the simple monotonic character
found in all setups previously studied here �apart from a
small bump at early times�, such a feature is lost for �0
=1 /2. Though the width eventually settles at a unique satu-
ration value, the corresponding relaxation time is one order
of magnitude longer than elsewhere on the phase diagram or
for PBC �see the curves for L=325 in the respective figures�.

In order to unravel the corresponding spatial particle dis-
tributions, we also looked at the time evolution of slope
PDFs at this point, for the same initial densities. The results
are depicted in Fig. 8, showing that for both cases a double-
peaked structure eventually evolves. The peak heights indi-
cate a large degree of spatial segregation between the �0

=1 /4 and 3 /4 phases. For example, in case �b� �initial den-
sity �0=1 /2�, at t=20 000 the peaks associated to the coex-
isting densities are 
8 times higher than the trough in the
PDF at slope zero ��=1 /2�.

We pursued this point further, via direct examination of
the evolution of averaged density profiles in the particle sys-
tem. Results for L=325, with initial density �0=1 /2 and ini-
tial distribution as uniform as possible �i.e., alternating
empty and occupied sites�, are shown in Fig. 9.

For t�500, the low injection/ejection rates cause the the
initial plateau of uniform density to be symmetrically eaten
into, as illustrated by the t=50 profile. After the two density
waves meet, a shock �kinematic wave� is formed, which for
this case of �I=�E
1 /2 is stationary on average �16�, i.e., it
jiggles around and is in effect bounced off the system’s
boundaries. For the ensemble-averaged densities at fixed
times �500, the consequence of this is that the promediated
profiles grow ever more featureless �because the spread be-
tween locations of the shock, at the same time but for differ-
ent noise realizations, increases with time owing to increas-
ing sample-to-sample decorrelation�. At t=10 000, one sees
in Fig. 9 a nearly constant slope, i.e., the local average den-

FIG. 7. �Color online� Double-logarithmic plot of interface
width w and overall particle density � against time, corresponding
to TASEP with open boundary conditions at �I=�E=1 /4 �on the
coexistence line�, lattice size L=325, and two distinct initial densi-
ties �0=1 /4 and 1 /2.

FIG. 8. �Color online� Slope PDFs at assorted times, for inter-
faces corresponding to TASEP with open boundary conditions, at
�I=�E=1 /4 �on the coexistence line�, lattice size L=325, and two
distinct initial densities, namely, �a� �0=1 /4 and �b� �0=1 /2. Key
to symbols: squares, t=150 �a�, t=50 �b�; triangles, t=500; hexa-
gons, t=5000; crosses, t=20 000.

FIG. 9. �Color online� Ensemble-averaged particle density pro-
files at assorted times, for TASEP with open boundary conditions, at
�I=�E=1 /4 �on the coexistence line�, lattice size L=325, and ini-
tial density �0=1 /2. Averages taken over 104 independent samples
�see text�.
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sity increases roughly linearly with position along the sys-
tem. Looking back at Fig. 7, however, it is apparent that a
large degree of spatial segregation remains at stationarity be-
tween the �=1 /4 and 3 /4 phases, within each realization.

Finally, still on the coexistence line, we investigated the
scaling properties of interface widths. For this, we chose the
initial condition �0=1 /4 which, as seen in Fig. 7, results in a
relatively smooth and monotonic evolution pattern. Our data
�skipping the very early stage t
103, for which the small
bumps referred to above make their appearance� are dis-
played in Fig. 10.

Attempting curve collapse on the data of Fig. 10 �see
inset� gives the following estimates: �=0.99�1�, z=2.10�5�.
This would imply �=0.47�2� from scaling, as shown by the
straight line on the main plot; a direct fit of L=1300 data for
7�103
 t
7�104 gives �=0.39�1�, which again is a
larger discrepancy compared with the scaling prediction than
in cases previously examined here.

The estimate of z from curve collapse is roughly in line
with the Bethe ansatz prediction �18� z=2, though it seems
difficult to stretch the error bars for our data to include this
latter value. As regards �, our estimate suggests that �=1 is
possibly an exact result for this case.

An argument can be given as follows. Going back to the
calculation outlined, for PBC, in Eq. �7�, and recalling the
spatial phase segregation shown in the late-time data of Fig.
8, one sees that the dominant feature of the interface �particle
system� is its division at a strongly fluctuating interface into
two main segments with symmetric slopes �low and high
densities�, of lengths �L. In order words, local densities will
be correlated along distances of order L. This is enough to
guarantee that the mean square interface width will depend
on L2. This argument is supported by a calculation of the size
dependence of the stationary mean square width. On the co-
existence line the diffusing shock gives a linear average sta-
tionary density profile �refer to the late-time curves in Fig.
9�, and this makes the large time limit of Eq. �7� proportional
to L2�2�I−1�2, consistent with �=1.

B. Continuum mean-field approach

We investigate how the effects of number conservation
can influence the approach to stationarity. We wish to find
out whether, and under what conditions, transient �e.g., bal-
listic� phenomena can occur which would mask the underly-
ing long-time relaxational dynamics. Determination of the
exponent z via interface width scaling, as done in Secs. II
and III A, relies heavily upon collapsing the “shoulders”
which mark the final approach to stationarity, thus this
method always picks out the longest characteristic time.
Therefore one may ask, for the low-density phase with open
boundary conditions, whether the L-independent relaxation
time implied by the prediction z=0 is hidden underneath a
longer process and whether in this scenario the latter time,
which is captured by interface width scaling, is associated
with features not so far emphasized within Bethe ansatz in-
vestigations, as in the connection between ballistic motion
and imaginary parts of energies. Such things might explain
the seeming mismatch between our results and those of Ref.
�18�.

In the TASEP �and similar nonequilibrium flow processes�
the bulk hopping process conserves total particle number—
hence the continuity-equation nature of the evolution equa-
tion and the slow nature of long-wavelength fluctuations of
the density. With open boundaries, particles can appear and
leave at the chain ends, thus causing the total number of
particles inside to change.

A group of particles crossing at a boundary immediately
affects the mean density and the local density near the
boundary. Such a group may be transferred into the interior
as a kinematic wave i.e., a moving domain wall, provided the
kinematic wave velocity v is nonzero and of the right sign. A
time of order L /v will be needed to affect the local density
throughout a system of size L �as, for example, is typically
required to achieve a steady state configuration�.

This argument suggests that measurements of quantities
�such as ones conserved in the interior� whose changes are
boundary induced will show characteristic times of order Lz�,
with z� at least unity �still slower limiting processes may also
be involved, owing to intrinsic features of the dynamics�. In
order to provide a quantitative counterpart to these ideas, we
have used a continuum mean-field approach �see, e.g., Ref.
�15�� in which the system is described by the noiseless
Burgers/KPZ equations, linearized by the Cole-Hopf trans-
formation �19,20�. This picks up the kinematic wave effects
in the evolution of the local density �l and its mean �. It
captures the ballistic transport between boundary and inte-
rior, described qualitatively above, which gives z�=1. In this
description the reduced density l�t�=�l�t�−1 /2 evolves as

l�t� =
�

�l
ln�cosh K�l − l0�e−K2t + 	

k
��Ake

kl + Bke
−kl�e−k2t�

�10�

towards a steady state

l = K tanh K�l − l0� , �11�

where K and l0 are decided by boundary rates ��I ,�E�, K
being real, except in the MC phase where it is imaginary.

FIG. 10. �Color online� Double-logarithmic plot of interface
width against time, corresponding to TASEP with open boundary
conditions on the coexistence line, at �I=�E=1 /4. Initial density
�0=1 /4 and lattice sizes L as in key to symbols. The full line
corresponds to w
 t0.47. Inset: scaling plot of data on main diagram,
using �=1, z=2.1; L*=L /325.
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The sum 	� takes care of the difference between initial and
steady states, and �since this difference is decaying� it in-
volves complex k with Re�k2��K2; this k has to be consis-
tent with boundary conditions. Ak, Bk are therefore deter-
mined by initial conditions. The difference typically becomes
a kinematic wave or domain wall �5,16,21–26�. If it is kin-
klike, its velocity v depends as follows on coarse-grained
densities �
, �� and currents J
, J� on either side of the
kink: v= �J
−J�� / ��
−���. These quantities are set by the
steady-state and initial �uniform� density profiles; for smooth
small-amplitude kinematic waves v=dJ /d�=1−2�, and then
the local coarse-grained density � is at late times set by the
steady state. For our investigations at ��I ,�E�= �1 /4,1 /2�
the initial profile �l=1 /4 has to go into the steady-state pro-
file, which corresponds to K=1 /4, l0=L, and differs from the
initial one only in having an upturn �to �L=3 /8� at the right
boundary.

The kinematic wave velocity for �=1 /4 is 1 /2, i.e., posi-
tive, so there is ballistic transfer, actually of vacancies at
speed 1 /2 from the right boundary, which after time t
�L /v=2L produces the steady-state profile with its upturn at
the right boundary. This is corroborated by our numerical
results depicted in Fig. 6. For all cases L=325, 650, and
1300, the interface width at t=2L has reached more than
98% of its asymptotic value. Thus, while attempts at produc-
ing overall curve collapse indicate z��1.20 as quoted above,
by focusing exclusively on the scaling of the “shoulders” one
gets a result much closer to the mean-field value.

We also applied this picture to other cases investigated in
Sec. III A, to check for consistency. Results are as follows.

For the MC phase at ��I ,�E�= �3 /4,3 /4�, initially �l
=1 /2, so v=0 and the steady state �l differs from the average
by an upturn to 2 /3 at the left boundary, and a downturn to
1 /3 at the right one. So ballistic effects are not very impor-
tant; furthermore the limiting process is the slower “KPZ
diffusion” having z=3 /2.

On the coexistence line at ��I ,�E�= �1 /4,1 /4�, two initial
densities were used: �a� �l=1 /2, �b� �l=1 /4. For �a�, the
essential aspects are all as given in Fig. 9, i.e., a ballistic
early evolution from the domain walls coming in from either
end, followed by the limiting slower diffusive process �z
=2�. These together give rise to the nonmonotonic form in
Fig. 7. For �b�, the ballistic process is effective for a long
time �of order L� during which the average � builds up, but
again the limiting process is diffusion �z=2�.

So, the mean-field continuum picture is consistent with all
our numerical results for open boundary conditions, espe-
cially the one where we differ from Ref. �18�. In this latter
case, the characteristic time arising from propagation of the
kinematic wave is longer than the intrinsic �L-independent�
one, thus resulting in the effective exponent z�=1 �for all
other cases, an exponent z�1 associated to intrinsic dynam-
ics dominates anyway�. Note that, for this scenario to work,
one needs the kinematic wave to have nonzero effective ve-
locity v, and �for a characteristic relaxation time, propor-
tional to L, to show up� one also needs the kinematic wave to
have to traverse a length of order L—whether that is the case
depends on the maximum distance from the nearest effective
boundary to the place�s� where the profile has to be adjusted.

In summary, the difference between our results and those
of Ref. �18� is real, and interpretable as above. The effects

and interpretation may be important for other quantities con-
served in the bulk which build up only by propagation from
the boundaries.

IV. QUENCHED DISORDER

Quenched disorder in the TASEP has been studied by
many authors �27–32�. Here, we investigate bond disorder
�29�, i.e., while all particles are identical, the site-to-site hop-
ping rates are randomly distributed.

Hereafter, we restrict ourselves to binary distributions
P�p� for the internal nearest-neighbor hopping rate p:

P�p� = ���p − ps� + �1 − ����p − pw� , �12�

where ps�1 /2, pw
1 /2 are associated, respectively, to
“strong” and “weak” bonds.

One must recall that the bond disorder introduced above
gives rise to correlated, or “columnar” disorder in the asso-
ciated interface problem �29,33�. Indeed, the �fixed� value of
the hopping rate at a given position x along the particle-
model axis will determine, once and for all, the probability
of the height h�x� being updated. This is in contrast with the
usual picture of quenched disorder in the KPZ model
�34–39�, where it is assumed that the intensity of disorder is
a random function of the instantaneous two-dimensional po-
sition �x ,h�x�� of the interface element at x.

In Fig. 11 we show interface width data for PBC, �
=1 /2, and �=1 /2, ps=0.8, pw=0.2 in Eq. �12�. Note that the
relaxation times are one order of magnitude longer than is
usual for pure systems �in the latter case, one must make
exception for the coexistence line with open boundary con-
ditions�. Though the overall picture of a scaling regime still
holds, with interface widths evolving in a simple, monotonic
way, in general the quality of data collapse is lower than for
pure systems. From our best fit, we estimate �=1.05�5�, z
=1.7�1�, from which scaling gives �=0.62�7�. A direct fit of
2�103�x�2�104 data for L=1300 gives �=0.56�1�, only

FIG. 11. �Color online� Double-logarithmic plot of interface
width against time, corresponding to TASEP with periodic bound-
ary conditions and binary quenched disorder, with �=1 /2, ps=0.8,
pw=0.2 �see Eq. �12��. �=1 /2, lattice sizes L as in key to symbols.
Full line corresponds to w
 t0.61. Inset: scaling plot of data on main
diagram, using �=1.05, z=1.7 �see text�; L*=L /325. Each point is
an average over 10000 independent realizations of quenched
randomness.
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just within the error bars predicted by scaling.
We have examined the stationary-state slope distributions

for the interface problem. Numerical results are displayed in
Fig. 12, together with their fit by a double-Gaussian form
��x�=aG1�x�+ �1−a�G2�x�, where Gi is a Gaussian centered
at xi with variance i

2. The best-fitting parameters give a
roughly symmetric curve, with a=0.53�2�, x1=−0.26�1�, x2
=0.31�1�, 1=0.21, 2=0.18. Such a double-peaked struc-
ture indicates phase separation, as seen earlier for pure sys-
tems on the coexistence line �though here this is quantita-
tively milder, as the peak-to-trough ratio is 
1.3, to be
compared to 
8 in the previous case�. Phase separation is
known to be a feature of the quenched-disordered TASEP
�27�.

We now outline a theoretical framework for the descrip-
tion of the quenched-disordered problem, in the spirit of ear-
lier work by Tripathy and Barma �27�. The analytic under-
standing of slope distributions and, particulary, of currents
and profiles, rests on the division of the system, for a given
disorder configuration, into an alternating succession of
weak-bond and strong-bond segments �Sw and Ss� each con-
taining only bonds of one strength. The longest weak bond
segments determine the current through the system. This is
easily seen in a mean-field account of the steady state of the
particle system �with PBC�. Here the constant current J
yields the relation �profile map�

�l+1 = 1 −
J

pl�l
, �13�

where pl is the hopping rate from site l to l+1 and �l is the
mean occupation of site l.

Throughout a weak bond segment Sn
w of length n the map

involves the constant �reduced� current J / pl=J / pw�Jw. The
corresponding strong bond variable is J / ps�Js; Js
Jw since
ps� pw. So, within any Sn

w �or Sn
s� the profile map is that of

an effective pure system, which is well known to give den-
sity profiles of kink shape, corresponding to low current or

high current: �l−
1
2 =k tanh k�l− l0� �monotonic increasing� or

�l−
1
2 =−K tan K�l− l0� �monotonic decreasing�, depending on

whether the reduced current J / p is less than or greater than
1 /4. k and K are related to the reduced current by k
=��1 /4�− �J / p�; K=��J / p�− �1 /4� �32�.

In the high current case K has to be small ��O�1 /L� in a
segment of size L�, to prevent the tangent from diverging and
taking �l outside of the permitted physical range �0,1�. In the
binary random system, it is not possible to have both weak
and strong bond segments �having, respectively, K=Kw, Ks�
in the high current “state” since that would lead to monotoni-
cally decreasing � for all segments. That would violate the
periodic boundary condition requirement. It cannot even ap-
ply with open boundary conditions in a large system, because
even with Ks kept small by having Js close to 1 /4, the larger
Jw would cause a large Kw, resulting in nonphysical values of
�l. Arguments of this sort show that the strong bond seg-
ments Ss are all in the low current phase, i.e., Js
1 /4 with
density profiles in each Ss increasing monotonically. Thus,
for PBC the profiles in each Sw have to decrease. That can
come about from having Jw�1 /4, which leads to Kw
=�Jw− �1 /4�. If the longest weak bond segment has length
n0, to prevent unphysical �l’s resulting from a divergence of
tan Kw�l− l0� somewhere within that segment we must have
Kw�� /n0. This gives

1

4
�

J

pw
�

1

4
+ � �

n0
�2

. �14�

It is straightforward to show that the characteristic length of
weak bond segment is n
 ln�1 / �1−���, and the largest weak
segment length is n0
 ln L / ln�1 / �1−���, so the above con-
dition on Jw is very restrictive, making the current typically
J
�pw /4�+O��1 / ln L�2�.

This is in agreement with simulation results J�0.055 and
0.029, respectively, for pw=0.2 and pw=0.1 �both with �
=1 /2 on a lattice with L=325�. A decreasing profile in each
Sw is also possible with Jw slightly less than 1 /4 since, in
addition to the kink-shaped low current profile, a profile with
�l decreasing between 1 and �1 /2�+k can result from the low
current map. Again the Kw that allows that is limited, leading
for this case to J
�pw /4�−O��1 / ln L�2�. This was seen, for
example, in simulations for �=0.8, where pw=0.1 gives J
�0.024. This same result can also arise from another low
current profile �having �l decreasing between �1 /2�−k and
zero�. All these weak segment profiles are seen in simulation
results, together with the characteristic kink-shaped profiles
of the strong-bond segments �e.g., for pw=0.1, �=0.5 see
Fig. 13, having J=0.0297�3�, i.e., J / pw just greater than
1 /4�.

Local density or slope distributions P��, with 
��h /�x, are available from the profiles �l, just as for the
pure case, by using the known density-slope relation, Eq. �2�
in

P�� = 	
segments

� dl
�� − l�
�dl/dl�

= 	
segments

1

�dl/dl� l=.

�15�

Contributions from high current segments give �using l=
−K tan Kl�:

FIG. 12. �Color online� Slope PDF in stationary state, corre-
sponding to TASEP with quenched disorder, �=1 /2, ps=0.8, pw

=0.2 �see Eq. �12��. Lattice size L=325 with PBC, �=1 /2. The full
line is a double Gaussian fit to data �see text�. 100 independent
realizations of quenched randomness were used, for each of which
samples were collected from 3�104 consecutive interface
configurations.
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C �
1

�dl/dl�l=

= 2�2 + 4K2�−1, �16�

while low current segments have contributions

C = �2�4k2 − 2�−1 for �� 
 2k ,

2�2 − 4k2�−1 for �� � 2k .
� �17�

In Eqs. �16� and �17�, these contributions are superimposed
with �-dependent weights related to their frequency of oc-
currence. Stochastic effects, missed from this account, cause
fluctuations in the spatial pinning of the profiles �as for the
pure case�, leading mainly to a smoothing of the divergences
near = �2k in the low current segment contributions.
Quantitative comparison of these predictions, e.g., to the data
displayed in Fig. 12, is not entirely appropriate, on account
of the coarse graining introduced by taking slope samples
along segments of size m bonds �typically m=60, as men-
tioned above�. Nevertheless, one can see that some general
aspects, such as the appearance of peaks roughly equidistant
from =0, are effectively mirrored in the numerical results.

V. DISCUSSION AND CONCLUSIONS

We start our discussion by recalling that the thermody-
namic limits of interface models, such as KPZ, and of exclu-
sion processes, differ in a subtle way. Namely, as can be seen
from Eqs. �5� and �6�, if one takes the L→� limit before
allowing t→�, one is left with a perpetual coarsening tran-
sient in which the interface gets ever rougher. On the other
hand, the TASEP displays a well-defined stationary state
even on an infinite system. Therefore, the correspondence of
the limiting-width regime of the former type of problem to
the stationary state of the latter can be only take effect within
a finite-size scaling context.

Once one is mindful of this distinction, however, the simi-
larities and differences between two finite systems linked by

the correspondence recalled in Sec. I are expected to be bona
fide features, which reflect objective connections between the
physics of nonequilibrium flow processes, and that of mov-
ing interfaces in random media. In Sec. II we first confirmed
that the known KPZ exponents can be numerically extracted,
with good accuracy, from the scaling of interface widths de-
rived from the underlying TASEP with PBC. For a given
range of system sizes, direct evaluation of � by examination
of the transient regime of width growth against time seems to
be the least accurate procedure, which in this case gave �
=0.31�1�. From scaling, with �=0.500�5�, z=1.52�3�, one
gets �=0.33�1�, in much better agreement with the exact �
=1 /3. Measuring this exponent directly from the transient
regime tends to result in underestimation; as seen in Secs. III
and IV above, such a trend is present in all our subsequent
results, both for open systems and for quenched disorder.
Also for PBC, we showed that the dependence of limiting
KPZ interface widths against TASEP particle density can be
accounted for by a treatment, which makes explicit use of the
weight factorization that occurs for TASEP with PBC �1,6�.
Arguments based on weight factorization provide an expla-
nation for the shape of slope distributions in the interface
problem as well.

In Sec. III A, we first established that open-boundary sys-
tems in the maximal-current phase, characterized by �I, �E
�1 /2, exhibit the same set of KPZ exponents as their PBC
counterparts. For the exponent z, this is in agreement with
the Bethe ansatz solution �18�. Examination of interface
widths corresponding to systems in the low-density phase,
with �I=1 /4, �E=1 /2, shows that curve collapse can be
found to a rather good extent, giving the following exponent
estimates: �=0.497�3�, z=1.20�5�, �=0.41�2�. This apparent
disagreement with the Bethe ansatz prediction �18� of z=0,
which implies a finite correlation length, is addressed in Sec.
III B �see two paragraphs on�. We have been able to provide
a prediction of the �possibly exact� interface width exponent
�=1 /2, based on considerations which make explicit use of
a finite correlation length for the TASEP.

For systems with �I=�E
1 /2, i.e., on the coexistence
line of the open-boundary TASEP, interface width scaling
gave �=0.99�1�, z=2.10�5�, �=0.47�2�. We provided a pre-
diction of �=1 based on properties of the corresponding
TASEP, in this case the fact that phase separation governs the
dominant features of the interface configuration at stationar-
ity. Direct calculation of density profiles in the particle sys-
tem shows the time evolution of a shock �kinematic wave�.
At late times, the ensemble averaging of local densities tends
to mask the evidence of phase segregation, which can, how-
ever, be retrieved by examination of the corresponding inter-
face slope PDFs.

In Sec. III B, we outlined a mean-field continuum calcu-
lation, which sheds additional light on the approach to sta-
tionarity in open-boundary systems. We showed that, under
suitable conditions such as those at ��I ,�E�= �1 /4,1 /2� with
uniform initial density �l=1 /4, system-wide propagation of a
kinematic wave translates into a characteristic time �Lz�

�z�=1 in mean field�. This goes towards explaining the ap-
parent inconsistency between our result from interface-width
evolution z=1.20�5� and that from the Bethe ansatz solution
which gives z=0. Indeed, in that case the L-independent re-

FIG. 13. �Color online� Upper part: time-averaged particle den-
sity against position on section of L=325 system with PBC, corre-
sponding to TASEP with quenched disorder, for a fixed bond con-
figuration �seen in lower part of figure�. Overall density �=1 /2,
�=1 /2, ps=0.9, pw=0.1 �see Eq. �12��. Average is over 4.65
�105 successive time steps, in stationary state. Note kink-shaped
profile for 35�x�45, in direct correspondence with the longest
concentration of strong bonds; also, the high-current profile for 65
�x�75, coinciding with the longest concentration of weak bonds.
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laxation time implied by z=0 is hidden underneath a slower
part of ballistic origin, and it is the scaling of the latter which
is captured by the interface width collapse, but not by con-
siderations solely of the real part of Bethe ansatz excitation
energies. Furthermore, in all other cases where our own nu-
merical results are consistent with those of Ref. �18�, the
mean-field prediction concurs with both. An extension of this
work has now been carried out using the more precise do-
main wall method of Refs. �23,40� on a kinklike initial state
in the massive phase �41�. This shows clearly the ballistic
element and the much faster �size-independent� amplitude
decay, providing an independent confirmation of the sce-
nario.

In Sec. IV we investigated quenched bond disorder in
TASEP with PBC. From the scaling analysis of the corre-
sponding interface widths �which in this case are subjected to
correlated or “columnar” randomness �29,33�� we estimate
�=1.05�5�, z=1.7�1�, �=0.62�7�. For comparison, values
quoted for � in standard, two-dimensional quenched disorder
in D=1+1 KPZ systems are close to 0.63 �35,36�. It has
been argued �36,37� that this type of KPZ model is in the
universality class of directed percolation, thus one should
have �=�DP=0.633. Furthermore, in Ref. �37�, it is shown
that by varying the intensity of the various terms in the
quenched counterpart of Eq. �3�, one can make KPZ-like
systems go through distinct regimes, namely, pinned, with
�P=0.63�3�, �P=0.67�5�, zP=1.06�8�; moving, with �M
=0.75�4�, �M =0.74�6�, zM =1.01�10�; and annealed �i.e.,
fast-moving interface�, with �A=0.50�4�, �A=0.30�4�, zA
=1.67�26�. It can be seen that our own set of estimates does
not fully fit into any of these, as could reasonably be ex-
pected from the extreme correlation between quenched de-
fects which is present here, and not in those early examples.

We tested universality properties within the columnar dis-
order class of models. This was done by replacing the binary
distribution �12� with a continuous, uniform one P�p�= �1
−c�−1 for c
 p
1. We used c=0.1, thereby avoiding the
problems associated with allowing p=0, see Ref. �29�, while
still having a rather broad distribution. Our data scale simi-
larly to those displayed in Fig. 11 for Eq. �12�. We get �
=1.05�5�, z=1.45�10� �hence �=0.72�7� from scaling�, in
reasonable agreement with the binary disorder case, though
error bars for z just fail to overlap.

We also investigated slope distributions for the quenched
disorder problem. These provide clear evidence of phase

separation, a phenomenon known to take place in such cir-
cumstances �27�.

A direct analytic �mean-field� approach to steady-state
properties of TASEP with quenched disorder produced
closed-form expressions for the piecewise shape of averaged
profiles densities, as well as rather restrictive bounds on cur-
rents. All these have been verified in our numerical simula-
tions. The analytic approach is similar to that of Ref. �27�,
where it was already shown that a mean field description
applies, and to part of Ref. �32�. In place of the maximum
current principle used in Ref. �27� we have obtained analytic
consequences of the mean-field mapping within segments
and combined them with segment probabilities to obtain new
results, particularly for profiles and limiting currents.

We note that, for weak randomness, characterized by a
small value of a disorder parameter � �this could be, e.g.,
ps− pw in Eq. �12��, and steady state conditions, the noiseless
�mean-field� constant current condition gives an equation for
��h /�x in the form

���x� =
�

�x
+ 2, �18�

where ��x� is a quenched variable corresponding to random
bond disorder. Equation �18� has the same structure as that
found for equations governing the evolution of local
Lyapunov exponents for Heisenberg-Mattis spin glass chains
�42,43�. To see the correspondence, refer, e.g., to Eq. �14� of
Ref. �43�, substituting � for �low� magnon frequency �. So
one can, in principle, adopt the same type of Fokker-Planck
procedures to find distributions of  in Burgers-like equa-
tions, and hence of slope distributions in KPZ systems.
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